The University of Texas M.D. Anderson Cancer Center was the institution with the highest contribution rate to the top 100 most-cited articles on curcumin.

However, in 2012, MD Anderson Cancer Center launched a research fraud probe against Aggarwal due to observations of image manipulation, leading to the retraction of 38 of his articles, some of which were about curcumin. The retracted articles featured instances of image manipulation and ethical concerns regarding animal studies.

The retracted articles related to natural productws included studies on curcumin, Picroliv (Picrorrhiza kurroa), vitamin E, boswellia, gambogic acid (xanthone resin, Garcinia hanburyi), garcinol, ursolic acid, gossypol, Celastrol (Tripterygium wilfordii, or léi gōng téng, thunder god vine), and Embelin (Ardisia paniculate).

https://md-anderson-cc.blogspot.com/2012/01/summary-of-alleged-image-fraud.html

The plethora of publications on the in vitro effects of curcumin is concerning. A huge variety of activities have been shown in in vitro assays. Concerns has been raised because curcumin is showing activity in almost any assay it is tested in. This phenomenon is known as assay interference. In vitro studies should therefore be supported by in vivo and human clinical trials before being applied clinically.

Potential anti-cancer effects of cur cumin were elucidated by Dr Aggarwal and his group, often using Salinas's Curcumin C3 Complex.

Aggarwal was one of the first to show anti-inflammatory activity which has since been demonstrated by many other researchers.

A search of PubMed, using the search term “Aggarwal BB”, produced 625 results (search date: 7th of February 2024). Restricting to publications mentioning curcumin, the total publications was 121. Bharat B. Aggarwal is the first author on 18 of the publications.

The first publication mentioning curcumin is from 1994 and it is a review of basic research on curcumin.

Thirty-eight publications authored by Aggarwal has been retracted.

The publications are all in vitro and in vivo studies.

A search of clinical studies where Aggarwal was an author identified five publications.

Aggarwal was second author on two of the papers and last author on three publications. None of these trials have been retracted (at today’s date of 7th of February 2024).

Aggarwal was also an author on many review papers. None of these have so far been retracted.

Clinical trial publications

These publications have not been retracted.

Aggarwal, B. B., Kumar, A., & Bharti, A. C. (2003). Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res, 23(1a), 363-398.

Dhillon, N., Aggarwal, B. B., Newman, R. A., Wolff, R. A., Kunnumakkara, A. B., Abbruzzese, J. L., Ng, C. S., Badmaev, V., & Kurzrock, R. (2008). Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res, 14(14), 4491-4499. https://doi.org/10.1158/1078-0432.Ccr-08-0024

Heymach, J. V., Shackleford, T. J., Tran, H. T., Yoo, S. Y., Do, K. A., Wergin, M., Saintigny, P., Vollmer, R. T., Polascik, T. J., Snyder, D. C., Ruffin, M. T. t., Yan, S., Dewhirst, M., Kunnumakkara, A. B., Aggarwal, B. B., & Demark-Wahnefried, W. (2011). Effect of low-fat diets on plasma levels of NF-κB-regulated inflammatory cytokines and angiogenic factors in men with prostate cancer. Cancer Prev Res (Phila), 4(10), 1590-1598. https://doi.org/10.1158/1940-6207.Capr-10-0136

Izzo, J. G., Malhotra, U., Wu, T. T., Ensor, J., Luthra, R., Lee, J. H., Swisher, S. G., Liao, Z., Chao, K. S., Hittelman, W. N., Aggarwal, B. B., & Ajani, J. A. (2006). Association of activated transcription factor nuclear factor kappab with chemoradiation resistance and poor outcome in esophageal carcinoma. J Clin Oncol, 24(5), 748-754. https://doi.org/10.1200/jco.2005.03.8810

Kanai, M., Yoshimura, K., Asada, M., Imaizumi, A., Suzuki, C., Matsumoto, S., Nishimura, T., Mori, Y., Masui, T., Kawaguchi, Y., Yanagihara, K., Yazumi, S., Chiba, T., Guha, S., & Aggarwal, B. B. (2011). A phase I/II study of gemcitabine-based chemotherapy plus curcumin for patients with gemcitabine-resistant pancreatic cancer. Cancer Chemother Pharmacol, 68(1), 157-164. https://doi.org/10.1007/s00280-010-1470-2

Sella, A., Aggarwal, B. B., Kilbourn, R. G., Bui, C. A., Zukiwski, A. A., & Logothetis, C. J. (1995). Phase I study of tumor necrosis factor plus actinomycin D in patients with androgen-independent prostate cancer. Cancer Biother, 10(3), 225-235. https://doi.org/10.1089/cbr.1995.10.225

Retracted Natural Products Publications with Aggarwal as author

Curcumin

Aggarwal, B. B., Banerjee, S., Bharadwaj, U., Sung, B., Shishodia, S., & Sethi, G. (2007). Curcumin induces the degradation of cyclin E expression through ubiquitin-dependent pathway and up-regulates cyclin-dependent kinase inhibitors p21 and p27 in multiple human tumor cell lines. Biochem Pharmacol, 73(7), 1024-1032. https://doi.org/10.1016/j.bcp.2006.12.010

Anand, P., Nair, H. B., Sung, B., Kunnumakkara, A. B., Yadav, V. R., Tekmal, R. R., & Aggarwal, B. B. (2010). Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem Pharmacol, 79(3), 330-338. https://doi.org/10.1016/j.bcp.2009.09.003

Anand, P., Sung, B., Kunnumakkara, A. B., Rajasekharan, K. N., & Aggarwal, B. B. (2011). Suppression of pro-inflammatory and proliferative pathways by diferuloylmethane (curcumin) and its analogues dibenzoylmethane, dibenzoylpropane, and dibenzylideneacetone: role of Michael acceptors and Michael donors. Biochem Pharmacol, 82(12), 1901-1909. https://doi.org/10.1016/j.bcp.2011.09.001

Anand, P., Sung, B., Kunnumakkara, A. B., Rajasekharan, K. N., & Aggarwal, B. B. (2016). Retraction notice to “Suppression of pro-inflammatory and proliferative pathways by diferuloylmethane (curcumin) and its analogues dibenzoylmethane, dibenzoylpropane, and dibenzylideneacetone: Role of Michael acceptors and Michael donors” [Biochem. Pharmacol. 82 (2011) 1901–1909]. Biochem Pharmacol, 102, 144. https://doi.org/10.1016/j.bcp.2015.11.009

Prasad, S., Tyagi, A. K., Siddik, Z. H., & Aggarwal, B. B. (2017). Curcumin-Free Turmeric Exhibits Activity against Human HCT-116 Colon Tumor Xenograft: Comparison with Curcumin and Whole Turmeric. Front Pharmacol, 8, 871. https://doi.org/10.3389/fphar.2017.00871

Tharakan, S. T., Inamoto, T., Sung, B., Aggarwal, B. B., & Kamat, A. M. (2010). Curcumin potentiates the antitumor effects of gemcitabine in an orthotopic model of human bladder cancer through suppression of proliferative and angiogenic biomarkers. Biochem Pharmacol, 79(2), 218-228. https://doi.org/10.1016/j.bcp.2009.08.007

Tharakan, S. T., Inamoto, T., Sung, B., Aggarwal, B. B., & Kamat, A. M. (2016). Retraction notice to “Curcumin potentiates the antitumor effects of gemcitabine in an orthotopic model of human bladder cancer through suppression of proliferative and angiogenic biomarkers” [Biochem. Pharmacol. 79 (2010) 218–228]. Biochem Pharmacol, 102, 145. https://doi.org/10.1016/j.bcp.2015.11.010

Yadav, V. R., Prasad, S., Kannappan, R., Ravindran, J., Chaturvedi, M. M., Vaahtera, L., Parkkinen, J., & Aggarwal, B. B. (2010). Cyclodextrin-complexed curcumin exhibits anti-inflammatory and antiproliferative activities superior to those of curcumin through higher cellular uptake. Biochem Pharmacol, 80(7), 1021-1032. https://doi.org/10.1016/j.bcp.2010.06.022

Yadav, V. R., Prasad, S., Kannappan, R., Ravindran, J., Chaturvedi, M. M., Vaahtera, L., Parkkinen, J., & Aggarwal, B. B. (2016). Retraction notice to “Cyclodextrin-complexed curcumin exhibits anti-inflammatory and antiproliferative activities superior to those of curcumin through higher cellular uptake” [Biochem. Pharmacol. 80 (2010) 1021–1032]. Biochem Pharmacol, 102, 142. https://doi.org/10.1016/j.bcp.2015.11.007

Pircroliv (Picrorrhiza kurroa)

Anand, P., Kunnumakkara, A. B., Harikumar, K. B., Ahn, K. S., Badmaev, V., & Aggarwal, B. B. (2008). Modification of cysteine residue in p65 subunit of nuclear factor-kappaB (NF-kappaB) by picroliv suppresses NF-kappaB-regulated gene products and potentiates apoptosis. Cancer Res, 68(21), 8861-8870. https://doi.org/10.1158/0008-5472.Can-08-1902

Vitamin E

Kannappan, R., Ravindran, J., Prasad, S., Sung, B., Yadav, V. R., Reuter, S., Chaturvedi, M. M., & Aggarwal, B. B. (2010). Gamma-tocotrienol promotes TRAIL-induced apoptosis through reactive oxygen species/extracellular signal-regulated kinase/p53-mediated upregulation of death receptors. Mol Cancer Ther, 9(8), 2196-2207. https://doi.org/10.1158/1535-7163.Mct-10-0277

Kannappan, R., Yadav, V. R., & Aggarwal, B. B. (2010). γ-Tocotrienol but not γ-tocopherol blocks STAT3 cell signaling pathway through induction of protein-tyrosine phosphatase SHP-1 and sensitizes tumor cells to chemotherapeutic agents. J Biol Chem, 285(43), 33520-33529. https://doi.org/10.1074/jbc.M110.158378

Kannappan, R., Yadav, V. R., & Aggarwal, B. B. (2016). γ-Tocotrienol but not γ-tocopherol blocks STAT3 cell signaling pathway through induction of protein-tyrosine phosphatase SHP-1 and sensitizes tumor cells to chemotherapeutic agents. J Biol Chem, 291(32), 16922. https://doi.org/10.1074/jbc.A110.158378

Boswellia

Kunnumakkara, A. B., Nair, A. S., Sung, B., Pandey, M. K., & Aggarwal, B. B. (2009). Boswellic acid blocks signal transducers and activators of transcription 3 signaling, proliferation, and survival of multiple myeloma via the protein tyrosine phosphatase SHP-1. Mol Cancer Res, 7(1), 118-128. https://doi.org/10.1158/1541-7786.Mcr-08-0154

Park, B., Prasad, S., Yadav, V., Sung, B., & Aggarwal, B. B. (2011). Boswellic acid suppresses growth and metastasis of human pancreatic tumors in an orthotopic nude mouse model through modulation of multiple targets. PLoS One, 6(10), e26943. https://doi.org/10.1371/journal.pone.0026943

Gambogic acid (xanthone resin, Garcinia hanburyi)

Prasad, S., Pandey, M. K., Yadav, V. R., & Aggarwal, B. B. (2011). Gambogic acid inhibits STAT3 phosphorylation through activation of protein tyrosine phosphatase SHP-1: potential role in proliferation and apoptosis. Cancer Prev Res (Phila), 4(7), 1084-1094. https://doi.org/10.1158/1940-6207.Capr-10-0340

Garcinol

Prasad, S., Ravindran, J., Sung, B., Pandey, M. K., & Aggarwal, B. B. (2010). Garcinol potentiates TRAIL-induced apoptosis through modulation of death receptors and antiapoptotic proteins. Mol Cancer Ther, 9(4), 856-868. https://doi.org/10.1158/1535-7163.Mct-09-1113

Ursolic acid

Prasad, S., Yadav, V. R., Kannappan, R., & Aggarwal, B. B. (2011). Ursolic acid, a pentacyclin triterpene, potentiates TRAIL-induced apoptosis through p53-independent up-regulation of death receptors: evidence for the role of reactive oxygen species and JNK. J Biol Chem, 286(7), 5546-5557. https://doi.org/10.1074/jbc.M110.183699

Prasad, S., Yadav, V. R., Kannappan, R., & Aggarwal, B. B. (2016). Ursolic acid, a pentacyclin triterpene, potentiates TRAIL-induced apoptosis through p53-independent up-regulation of death receptors. EVIDENCE FOR THE ROLE OF REACTIVE OXYGEN SPECIES AND JNK. J Biol Chem, 291(32), 16924. https://doi.org/10.1074/jbc.A110.183699

Gossypol

Sung, B., Ravindran, J., Prasad, S., Pandey, M. K., & Aggarwal, B. B. (2010). Gossypol induces death receptor-5 through activation of the ROS-ERK-CHOP pathway and sensitizes colon cancer cells to TRAIL. J Biol Chem, 285(46), 35418-35427. https://doi.org/10.1074/jbc.M110.172767

Sung, B., Ravindran, J., Prasad, S., Pandey, M. K., & Aggarwal, B. B. (2016). Gossypol induces death receptor-5 through activation of ROS-ERK-CHOP pathway and sensitizes colon cancer cells to TRAIL. J Biol Chem, 291(32), 16923. https://doi.org/10.1074/jbc.A110.172767

Celastrol (Tripterygium wilfordii, or léi gōng téng, thunder god vine)

Sung, B., Park, B., Yadav, V. R., & Aggarwal, B. B. (2010). Celastrol, a triterpene, enhances TRAIL-induced apoptosis through the down-regulation of cell survival proteins and up-regulation of death receptors. J Biol Chem, 285(15), 11498-11507. https://doi.org/10.1074/jbc.M109.090209

Sung, B., Park, B., Yadav, V. R., & Aggarwal, B. B. (2016). Celastrol, a triterpene, enhances TRAIL-induced apoptosis through the down-regulation of cell survival proteins and up-regulation of death receptors. J Biol Chem, 291(32), 16920. https://doi.org/10.1074/jbc.A109.090209

Embelin (Ardisia paniculate)

Reuter, S., Prasad, S., Phromnoi, K., Kannappan, R., Yadav, V. R., & Aggarwal, B. B. (2010). Embelin suppresses osteoclastogenesis induced by receptor activator of NF-κB ligand and tumor cells in vitro through inhibition of the NF-κB cell signaling pathway. Mol Cancer Res, 8(10), 1425-1436. https://doi.org/10.1158/1541-7786.Mcr-10-0141

Sung, B., Murakami, A., Oyajobi, B. O., & Aggarwal, B. B. (2009). Zerumbone abolishes RANKL-induced NF-kappaB activation, inhibits osteoclastogenesis, and suppresses human breast cancer-induced bone loss in athymic nude mice. Cancer Res, 69(4), 1477-1484. https://doi.org/10.1158/0008-5472.Can-08-3249